Mixpod


MusicPlaylistRingtones
Create a playlist at MixPod.com

sábado, 7 de agosto de 2010


Coriolis

El efecto Coriolis, descrito en 1835 por el científico francés Gaspard-Gustave Coriolis, es el efecto que se observa en un sistema de referencia en rotación (y por tanto no inercial) cuando un cuerpo se encuentra en movimiento respecto de dicho sistema de referencia.

Este efecto consiste en la existencia de una aceleración relativa del cuerpo en dicho el sistema en rotación. Esta aceleración es siempre perpendicular al eje de rotación del sistema y a la velocidad del cuerpo.

El efecto Coriolis hace que un objeto que se mueve sobre el radio de un disco en rotación tienda a acelerarse con respecto a ese disco según si el movimiento es hacia el eje de giro o alejándose de éste. Por el mismo principio, en el caso de una esfera en rotación, el movimiento de un objeto sobre los meridianos también presenta este efecto, ya que dicho movimiento reduce o incrementa la distancia respecto al eje de giro de la esfera.

Debido a que el objeto sufre una aceleración desde el punto de vista del observador en rotación, es como si para éste existiera una fuerza sobre el objeto que lo acelera. A esta fuerza se la llama fuerza de Coriolis, y no es una fuerza real en el sentido de que no hay nada que la produzca. Se trata pues de una fuerza inercial o ficticia, que se introduce para explicar, desde el punto de vista del sistema en rotación, la aceleración del cuerpo, cuyo origen está en realidad, en el hecho de que el sistema de observación está rotando.

Un ejemplo canónico de efecto Coriolis es el experimento imaginario en el que disparamos un obús desde el Ecuador en dirección norte. El cañón está girando con la tierra hacia el este y, por tanto, imprime al obús esa velocidad (además de la velocidad hacia adelante de la carga de impulsión). Al viajar el obús hacia el norte, sobrevuela puntos de la tierra cuya velocidad líneal hacia el este va disminuyendo con la latitud creciente. La inercia del obús hacia el este hace que su velocidad angular aumente y que, por tanto, adelante a los puntos que sobrevuela. Si el vuelo es suficientemente largo (ver cálculos al final del artículo), el obús caerá en un meridiano situado al este de aquél desde el cual se disparó, a pesar de que la dirección del disparo fue exactamente hacia el norte. Análogamente, una masa de aire que se desplace hacia el este sobre el ecuador aumentará su velocidad de giro con respecto al suelo en caso de que su latitud disminuya. Finalmente, el efecto Coriolis, al actuar sobre masas de aire (o agua) en latitudes intermedias, induce un giro al desviar hacia el este o hacia el oeste las partes de esa masa que ganen o pierdan latitud de forma parecida a como gira la bolita del ejemplo.

La fuerza de Coriolis es una fuerza ficticia que aparece cuando un cuerpo está en movimiento con respecto a un sistema en rotación y se describe su movimiento en ese referencial. La fuerza de Coriolis es diferente de la fuerza centrífuga. La fuerza de Coriolis siempre es perpendicular a la dirección del eje de rotación del sistema y a la dirección del movimiento del cuerpo vista desde el sistema en rotación. La fuerza de Coriolis tiene dos componentes:

§ una componente tangencial, debido a la componente radial del movimiento del cuerpo, y

§ una componente radial, debida a la componente tangencial del movimiento del cuerpo.

La componente del movimiento del cuerpo paralela al eje de rotación no engendra fuerza de Coriolis.

El valor de la fuerza de Coriolis es:



Donde:

"M" es la masa del cuerpo.

"V" es la velocidad del cuerpo en el sistema en rotación .

"W" es la velocidad angular del sistema en rotación vista desde un sistema inercial.

" X" indica producto vectorial.

Fig. 4.22 La tendencia del giro varía según el hemisferio considerado


Historia

En 1835, Gaspard-Gustave de Coriolis, en su artículo Sur les équations du mouvement relatif des systèmes de corps, describió matemáticamente la fuerza que terminó llevando su nombre. En ese artículo, la fuerza de Coriolis aparece como una componente suplementaria a la fuerza centrífuga experimentada por un cuerpo en movimiento relativo a un referencial en rotación, como puede producirse, por ejemplo, en los engranajes de una máquina. El razonamiento de Coriolis se basaba sobre un análisis del trabajo y de la energía potencialy cinética en los sistemas en rotación.

Ahora, la demostración más utilizada para enseñar la fuerza de Coriolis utiliza los útiles de la cinemática.

Esta fuerza comenzó a aparecer en la literatura meteorológica y oceanográfica sólo hasta finales del siglo XIX. El término fuerza de Coriolis apareció a principios del siglo XX.

Formulación y demostración

Para demostrar la expresión analítica expresada en la introducción, existen dos aproximaciones diferentes: por conservación del momento angular o por derivación en base móvil. A continuación se explican ambas.

Fig. 4.23 .En un sistema de coordenadas cilíndricas, la velocidad (en negro) de un punto puede descomponerse en una velocidad radial (en magenta), una velocidad axial (en azul) y una velocidad tangencial (en verde).


Demostración por conservación del momento angular

Recordemos que cuando un observador en un sistema no inercial, como lo es un sistema en rotación, trata de comprender el comportamiento de su sistema como si fuese un sistema inercial, ve aparecer fuerzas ficticias. En el caso de un sistema en rotación, el observador ve que todos los objetos que no están sujetos se alejan de manera radial como si actuase sobre ellos una fuerza proporcional a sus masas y a la distancia a una cierta recta (el eje de rotación). Esa fuerza es la fuerza centrífuga que hay que compensar con la fuerza centrípeta para sujetar los objetos. Por supuesto, para un observador externo, situado en un sistema inercial (sistema fijo), la única fuerza que existe es la fuerza centrípeta, cuando los objetos están sujetos. Si no lo están, los objetos tomarán la tangente y se alejarán del eje de rotación.

Si los objetos no están inmóviles con respecto al observador del sistema en rotación, otra fuerza ficticia aparece: la fuerza de Coriolis. Visto del sistema en rotación, el movimiento de un objeto se puede descomponer en una componente paralela al eje de rotación, otra componente radial (situada sobre una línea que pasa por el eje de rotación y perpendicular a éste), y una tercera componente tangencial (tangente a un círculo centrado en el eje y perpendicular a éste) (ver dibujo).

Un objeto que se desplaza paralelamente al eje de rotación, visto de un sistema fijo, gira con el sistema en rotación a la misma velocidad angular y radio constante. La única fuerza que actúa sobre el objeto es la fuerza centrípeta. El observador del sistema en rotación sólo ve la fuerza centrífuga contra la cual hay que oponerse para que se quede a la misma distancia del eje.

Fig. 4. Cuando se reduce el radio de rotación de un cuerpo sin aplicar un torque, el momento angular se conserva y la velocidad tangencial aumenta. En cambio, si se obliga el cuerpo a conservar la misma velocidad angular, la velocidad tangencial disminuye. El dibujo está visto desde un sistema fijo (inercial).

Supongamos que un observador en el sistema en rotación mantiene una masa a una distancia del eje de rotación mediante un hilo de masa despreciable. El observador tira del hilo y modifica ligeramente el radio de rotación de la masa de . Eso le ha tomado un tiempo . Como el momento dinámico es nulo, el momento angular de la masa se conserva. Si llamamos la velocidad de la masa, la conservación del momento angular nos dice:



El signo menos indica que cuando el radio aumenta la velocidad tangencial disminuye.

Para un observador fijo, entre la velocidad de la masa que se ve obligada a seguir una trayectoria radial y la velocidad de la masa que conserva su momento angular hay una diferencia de:


Como el objeto no está sujeto al sistema en rotación, el observador en ese sistema ve la masa tomar una velocidad lateral . Eso lo interpreta como la aplicación de una fuerza lateral (de Coriolis). Si el cambio de velocidad tomó segundos, la aceleración de Coriolis será (en valor absoluto):


Donde Vr es la velocidad radial. Esa aceleración corresponde a una fuerza (de Coriolis) de:


Ocupémonos de un objeto con velocidad tangencial vista por el observador en el sistema en rotación. Esta vez, la misma masa tenida por un hilo tiene una velocidad angular diferente del sistema en rotación. Para el observador en el sistema en rotación, las fuerzas que ve aplicadas a la masa para que siga una trayectoria circular son: la fuerza centrífuga que ve aplicada en todos los objetos, más la fuerza centrífuga debido a la rotación aparente de la masa . Pero eso no basta. Hay aún otra fuerza aparente, y es precisamente la fuerza de Coriolis. Calculemos la fuerza centrípeta que ve un observador fijo. La velocidad tangencial que ve es . Para este observador, la fuerza centrípeta que mantiene la masa a distancia constante es:


El primer término es la fuerza centrífuga común a todos los objetos que giran con el sistema en rotación. El tercero es la fuerza centrífuga debida a la rotación de la masa con respecto al sistema en rotación. Y el segundo término es la fuerza de Coriolis. Es un término suplementario debido al hecho de que la fuerza centrífuga depende del cuadrado de la velocidad tangencial y no puede obtenerse sumando las fuerzas centrífugas debido a velocidades parciales. La fuerza de Coriolis es:


Como hemos dicho, esa fuerza es radial.

Demostración por la derivación en base móvil

Para esta demostración utilizaremos el subíndice abs para indicar magnitudes vistas desde el sistema de referencia inercial, es decir, uno donde el espacio sea homogéneo e isótropo y donde el tiempo sea constante. El subíndice rel (relativa) se refiere a magnitudes vistas desde una referencia no galileana o no inercial. El subíndice ar (arrastre) hace referencia al movimiento de la base móvil respecto a la base fija.

También es necesario conocer cómo se deriva en una base móvil:




Una aceleración es un cambio en la magnitud o en la orientación de la velocidad. Para esa demostración consideraremos un movimiento que no varía la magnitud de su velocidad, es decir, que no está sometido a fuerzas que tengan alguna componente en la dirección del movimiento.

Entonces:


Por una parte:



Por otra:


Donde:


Como no consideramos el movimiento alrededor del Sol, sino sólo el giro de la tierra en torno a si misma:

Además, como estamos imaginando un movimiento sin aceleración relativa (como un proyectil):


La cosa queda así:




Pero:


Entonces:



Volviendo al principio:



La aceleración de Coriolis es el primer sumando:


La aceleración centrípeta es el segundo:



No hay comentarios:

Publicar un comentario