Mixpod


MusicPlaylistRingtones
Create a playlist at MixPod.com

sábado, 7 de agosto de 2010

ANALISIS DE ACELERACION



Aceleración

La aceleración es una magnitud vectorial que nos indica el ritmo o tasa de cambio de la velocidad de un móvil por unidad de tiempo. En otras palabras, cuánta rapidez adquiere un objeto durante el transcurso de su movimiento, según una cantidad definida de tiempo.

En el contexto de la mecánica vectorial newtoniana se representa normalmente por o .

Componentes intrínsecas de la aceleración: aceleraciones tangencial y normal


Componentes intrínsecas de la aceleración.

En tanto que el vector velocidad v es tangente a la trayectoria, el vector aceleración a puede descomponerse en dos componentes (llamadas componentes intrínsecas) mutuamente perpendiculares: una componente tangencial at (en la dirección de la tangente a la trayectoria), llamada aceleración tangencial, y una componente normal an (en la dirección de la normal principal a la trayectoria), llamada aceleración normal o centrípeta (este último nombre en razón a que siempre está dirigida hacia el centro de curvatura).

Derivando la velocidad con respecto al tiempo, teniendo en cuenta que el vector tangente cambia de dirección al pasar de un punto a otro de la trayectoria (esto es, no es constante) obtenemos

siendo el versor tangente a la trayectoria en el mismo sentido que la velocidad y la velocidad angular. Resulta conveniente escribir la expresión anterior en la forma

Siendo

el versor normal a la trayectoria, esto es dirigido hacia el centro de curvatura de la misma,

el radio de curvatura de la trayectoria, esto es el radio de la circunferencia osculatriz a la trayectoria.

Las magnitudes de estas dos componentes de la aceleración son:

Cada una de estas dos componentes de la aceleración tiene un significado físico bien definido. Cuando una partícula se mueve, su celeridad puede cambiar y este cambio lo mide la aceleración tangencial. Pero si la trayectoria es curva también cambia la dirección de la velocidad y este cambio lo mide la aceleración normal.

• Si en el movimiento curvilíneo la celeridad es constante (v=cte), la aceleración tangencial será nula, pero habrá una cierta aceleración normal, de modo que en un movimiento curvilíneo siempre habrá aceleración.

• Si el movimiento es circular, entonces el radio de curvatura es el radio R de la circunferencia y la aceleración normal se escribe como an = v2/R.

• Si la trayectoria es rectilínea, entonces el radio de curvatura es infinito (ρ→∞) de modo que an=0 (no hay cambio en la dirección de la velocidad) y la aceleración tangencial at será nula o no según que la celeridad sea o no constante.

Los versores que aparecen en las expresiones anteriores son los versores del triedro de Frênet que aparece en la geometría diferencial de curvas del siguiente modo:

es el versor tangente a la curva.
es el versor normal a la curva.
es el vector velocidad angular que es paralelo al versor binormal a la curva.

Movimiento circular uniforme

Cinemática del movimiento circular.

Un movimiento circular uniforme es aquél en el que la partícula recorre una trayectoria circular de radio R con celeridad constante, es decir, que la distancia recorrida en cada intervalo de tiempo igual es la misma. Para ese tipo de movimiento el vector de velocidad mantiene su módulo y va variando la dirección siguiendo una trayectoria circular. Si se aplican las fórmulas anteriores, se tiene que la aceleración tangencial es nula y la aceleración normal es constante: a esta aceleración normal se la llama "aceleración centrípeta". En este tipo de movimiento la aceleración se invierte en modificar la trayectoria del objeto y no en modificar su velocidad.

Movimiento rectilíneo acelerado
: Movimiento rectilíneo uniformemente acelerado

En el movimiento rectilíneo acelerado, la aceleración instantánea es representada como la pendiente de la recta tangente a la curva que representa gráficamente la función v(t).

Si se aplican las fórmulas anteriores al movimiento rectilíneo, en el que sólo existe aceleración tangencial, al estar todos los vectores contenidos en la trayectoria, podemos prescindir de la notación vectorial y escribir simplemente:


Aceleración en mecánica relativista

El análogo de la aceleración en mecánica relativista se llama cuadriaceleración y es un cuadrivector cuyas tres componentes espaciales para pequeñas velocidades coinciden con las de la aceleración newtoniana (la componente temporal para pequeñas velocidades resulta proporcional a la potencia de la fuerza divida por la velocidad de la luz y la masa de la partícula).

En mecánica relativista la cuadrivelocidad y la cuadriaceleración son siempre ortogonales, eso se sigue de que la cuadrivelocidad tiene un (pseudo)módulo constante:




CORIOLIS

El efecto Coriolis, descrito en 1835 por el científico francés Gaspard-Gustave Coriolis, es el efecto que se observa en un sistema de referencia en rotación (y por tanto no inercial) cuando un cuerpo se encuentra en movimiento respecto de dicho sistema de referencia. Este efecto consiste en la existencia de una aceleración relativa del cuerpo en dicho sistema en rotación. Esta aceleración es siempre perpendicular al eje de rotación del sistema y a la velocidad del cuerpo.

El efecto Coriolis hace que un objeto que se mueve sobre el radio de un disco en rotación tienda a acelerarse con respecto a ese disco según si el movimiento es hacia el eje de giro o alejándose de éste. Por el mismo principio, en el caso de una esfera en rotación, el movimiento de un objeto sobre los meridianos también presenta este efecto, ya que dicho movimiento reduce o incrementa la distancia respecto al eje de giro de la esfera.

Debido a que el objeto sufre una aceleración desde el punto de vista del observador en rotación, es como si para éste existiera una fuerza sobre el objeto que lo acelera. A esta fuerza se la llama fuerza de Coriolis, y no es una fuerza real en el sentido de que no hay nada que la produzca. Se trata pues de una fuerza inercial o ficticia, que se introduce para explicar, desde el punto de vista del sistema en rotación, la aceleración del cuerpo, cuyo origen está en realidad, en el hecho de que el sistema de observación está rotando.

Un ejemplo canónico de efecto Coriolis es el experimento imaginario en el que disparamos un proyectil desde el Ecuador en dirección norte. El cañón está girando con la tierra hacia el este y, por tanto, imprime al proyectil esa velocidad (además de la velocidad hacia adelante al momento de la impulsión). Al viajar el proyectil hacia el norte, sobrevuela puntos de la tierra cuya velocidad líneal hacia el este va disminuyendo con la latitud creciente. La inercia del proyectil hacia el este hace que su velocidad angular aumente y que, por tanto, adelante a los puntos que sobrevuela. Si el vuelo es suficientemente largo (ver cálculos al final del artículo), el proyectil caerá en un meridiano situado al este de aquél desde el cual se disparó, a pesar de que la dirección del disparo fue exactamente hacia el norte.

Análogamente, una masa de aire que se desplace hacia el este sobre el ecuador aumentará su velocidad de giro con respecto al suelo en caso de que su latitud disminuya. Finalmente, el efecto Coriolis, al actuar sobre masas de aire (o agua) en latitudes intermedias, induce un giro al desviar hacia el este o hacia el oeste las partes de esa masa que ganen o pierdan latitud de forma parecida a como gira la bolita del ejemplo.

Aceleración constante

Como el cambio de la velocidad en cada intervalo es siempre el mismo (10 m/s/s), se trata de un movimiento de aceleración constante o uniformemente acelerado.

Los cuerpos que se mueven con aceleración constante recorren distancias directamente proporcionales al cuadrado del tiempo.

Aceleración media

La aceleración (tangencial) media de un móvil se calcula utilizando la siguiente ecuación:

Con ella calculamos el cambio medio de rapidez en el intervalo de tiempo deseado.
Para conocer la aceleración instantánea se puede utilizar la misma aproximación que hicimos para el caso de la velocidad instantánea: tomar un intervalo muy pequeño y suponer que la aceleración media en él equivale a la aceleración instantánea.

Unidades
la aceleración se puede expresa en unidades de velocidad dividida entre unidades de tiempo. Por ejemplo:

• 3 (m/s)/s
• 1 (km/h)/s
• 5 (cm/s)/min

En el Sistema Internacional, la unidad de aceleración es 1 (m/s)/s, es decir 1 m/s².
Dirección de la aceleración

Como la aceleración es una magnitud vectorial, siempre tendrá asociada una dirección. La dirección del vector aceleración depende de dos cosas:

• de que la rapidez esté aumentando o disminuyendo
• de que el cuerpo se mueva en la dirección + o - .


Si un móvil aumenta su rapidez, la aceleración tiene el mismo sentido que la velocidad.

No hay comentarios:

Publicar un comentario