Mixpod


MusicPlaylistRingtones
Create a playlist at MixPod.com

sábado, 7 de agosto de 2010

LEVAS





Leva

Una leva es un elemento mecánico hecho de algún material (madera, metal, plástico, etc.) que va sujeto a un eje y tiene un contorno con forma especial. De este modo, el giro del eje hace que el perfil o contorno de la leva toque, mueva, empuje o conecte una pieza conocida como seguidor. Existen dos tipos de seguidores, de traslación y de rotación.

La unión de una leva se conoce como unión de punto en caso de un plano o unión de línea en caso del espacio. De ser necesario pueden agregarse dientes a la leva para aumentar el contacto.

El diseño de una leva depende del tipo de movimiento que se desea imprimir en el seguidor. Como ejemplos se tienen el árbol de levas del motor de combustión interna, el programador de lavadoras, etc.

También se puede realizar una clasificación de las levas en cuanto a su naturaleza. Así, las hay de revolución, de translación, desmodrómicas (éstas son aquellas que realizan una acción de doble efecto), etc.

La máquina que se usa para fabricar levas se le conoce como generadora.

Diseño cinemático de la leva

La leva y el seguidor realizan un movimiento cíclico (360 grados). Durante un ciclo de movimiento el seguidor se encuentra en una de tres fases. Cada fase dispone de otros cuatro sinusoidales que en el coseno de "fi" se admiten como levas espectatrizes. Los chicos de mantenimiento, comunmente son especialmente hábiles en este campo de prueba e hiperconmutacion.

Ley fundamental del diseño de levas

Las ecuaciones que definen el contorno de la leva y por lo tanto el movimiento del seguidor deben cumplir los siguientes requisitos, lo que es llamado la ley fundamental del diseño de levas:

•La ecuación de posición del seguidor debe ser continua durante todo el ciclo.

•La primera y segunda derivadas de la ecuación de posición (velocidad y aceleración) deben ser continuas.


•La tercera derivada de la ecuación (sobreaceleración o jerk) no necesariamente debe ser continua, pero sus discontinuidades deben ser finitas.

Las condiciones anteriores deben cumplirse para evitar choques o agitaciones innecesarias del seguidor y la leva, lo cual sería perjudicial para la estructura y el sistema en general.




Árboles de levas y Taquetes


El árbol de levas y los taquetes tienen la importante función de sincronizar la apertura y cierre de las válvulas de admisión y de escape, y hacer girar tanto a la bomba de aceite como al eje del distribuidor del sistema de ignición. Adicionalmente, acciona la bomba de gasolina mecánica.

El árbol de levas está constituido por aleaciones de hierro fundido a presión, pudiendo estar alojado en el bloque ó en las cámaras, como en los motores más recientes. Los más modernos motores pueden tener hasta dos árboles de levas, utilizando uno de ellos para las válvulas de admisión y el otro para las de escape. De esta forma, los manuales y los catálogos utilizan las abreviaturas SOHC que significa árbol de levas sencillo y DOHC que denota al doble árbol de levas en la cámara.

El árbol de levas gira sobre cojinetes (bocinas) de diferentes aleaciones con el objetivo de disminuir la fricción. Federal Mogul fabrica juegos de cojinetes para los puntos de apoyo (bancadas) de los arboles de levas bajo las especificaciones del fabricante original del motor.

La función principal del árbol de levas es la de convertir el movimiento rotatorio en movimiento lineal de los taquetes y las válvulas. En algunos motores el movimiento lineal se transmite mediante la varilla de empuje y, en otros, directamente al taquete ó a la válvula. Todo ello depende del diseño del motor. Otro aspecto importante a tomar en cuenta es que durante su trabajo debe girar a altas revoluciones y someterse a grandes cargas de fuerza, las cuales originan desgastes en sus lóbulos y en los taquetes por efecto de la fricción entre sus cuerpos. Estos desgastes varían la sincronización de los tiempos de apertura de las válvulas de admisión y escape, produciendo de esta forma combustiones imperfectas que afectan directamente la potencia del motor, y generan contaminación ambiental.

Los Taquetes pueden ser de varios tipos tales como los mecánicos de una pieza sólida, los hidráulicos que trabajan con presión de aceite y los hidráulicos con rodillos que tienen este último componente para ayudar a disminuir la fricción. Todos ellos tienen la única función de transmitir el movimiento del árbol de levas hacia las válvulas.

Por lo antes expuesto, al reparar un motor se debe observar la presencia de desgastes en los lóbulos y en caso que lo haya, proceder a verificar las medidas de los mismos, los puntos de apoyos y los cojinetes (bocinas) del árbol de levas así como también el desgaste que pueden haber sufrido los taquetes, las varillas de empuje y los balancines. Hay que cambiar todas las partes que sean necesarias, pero se debe tener presente que al reemplazar el árbol de levas también deben montarse los taquetes y los cojinetes (bocinas) nuevos, para garantizar la vida útil de éste componente.

Otras recomendaciones importantes son las que siguen. Al colocar los cojinetes en los puntos de apoyo del árbol de levas, el orificio de lubricación del cojinete debe quedar alineado con el orificio del punto de apoyo del árbol de levas para asegurar la lubricación necesaria y evitar que éste último sufra algún daño. Adopte como norma el uso de aceite en los puntos de apoyo, cojinetes y lóbulos. Al instalar el árbol de levas debe hacerlo con sumo cuidado, girándolo para evitar producir daños en los lóbulos y en los cojinetes. Finalmente, debe verificarse que el mismo gire sin dificultad.

En cualquier tipo de reparación lo recomendables es utilizar autopartes y piezas de la mejor calidad. Entre los mecánicos, uno de las más reconocidas es Sealed Power.


Problemas de despegues en las levas

Uno de los problemas principales de algunos mecanismos leva- seguidor es el problema de despegue del seguidor debido a los efectos dinámicos del movimiento. En muchos casos, el contacto entre la leva y el seguidor se consigue mediante un resorte (o muelle) que presiona el seguidor contra la leva, tal como muestra la figura siguiente. Durante el ascenso el seguidor sufre una primera fase de aceleración y luego otra de deceleración. Debido a su inercia el seguidor tendrá a seguir subiendo al final de la subida (despegándose de la leva) y es el muelle el encargado de oponerse a esta tendencia, asegurando el contacto con la leva. Así, pues, el problema tiene tres variables fundamentales.

•Masa del seguidor: cuanto más pesado sea el seguidor, mayor será su inercia y, por tanto, mayor será la tendencia de éste a despegarse al final de la subida.

•Rigidez del muelle: cuanto mayor sea la rigidez del muelle, más fuerza ejerce éste sobre el seguidor para que no se separe de la leva, por lo que la tendencia al despegue será menor.

•Velocidad de la leva: cuanto mayor sea la velocidad de la leva, la aceleración y deceleración del seguidor durante la subida será también mayor (el seguidor sube en menos tiempo) y, por tanto, la inercia del mismo será mayor, por lo que la tendencia a despegarse también será mayor.

En conclusión, para que no haya despegue, cuanto mayor sea la velocidad de operación de la leva, menos masa deberá tener el seguidor y mayor deberá ser la rigidez del muelle. El problema es que, aligerar el seguidor puede tener un efecto negativo en su resistencia, y aumentar la rigidez del muelle implica aumentar mucho la fuerza de contacto, por lo que el movimiento de la leva sufrirá una irregularidad mayor ya que durante la subida la gran fuerza de contacto se opone al movimiento, pero lo favorece a la bajada.

El efecto de estas tras variables fundamentales puede experimentarse en la siguiente animación, que constituye un modelo cinetoestático del problema (la velocidad de la leva es constante, es decir, supone que la fuerza de contacto no afecta al movimiento de la leva).


CLASIFICACIÓN DE LAS LEVAS Y LOS SEGUIDORES

La versatilidad y flexibilidad en el diseño de los sistemas de levas se encuentran entre sus características más atractivas. Con todo, esto da origen también a una gran variedad de perfiles y formas y a la necesidad de usar cierta terminología para distinguir unas de otras.

En general, las levas se clasifican según sus formas básicas:



Leva de placa, llamada también de disco o radial:

El cuerpo de estas tienen la forma de un disco con el contorno de la leva formando sobre la circunferencia, en estas levas por lo general la línea de acción del seguidor es perpendicular al eje de la leva y hace contacto con la leva con ayuda de un resorte




Leva de cuña.




Leva cilíndrica o de tambor:

En las levas de tambor la pista de la leva generalmente se labra alrededor del tambor Normalmente la línea de acción del seguidor es estas levas es paralela al eje de la leva.



Leva lateral o de cara:

En las pistas de la leva se labra en la parte frontal el disco.

También se clasifican según sus formas básicas del seguidor

Seguidor de cuña.


Seguidor de cara plana.



Seguidor de rodillo o carretilla.



Seguidor de cara esférica o zapata curva



Nomenclatura de las levas

El desplazamiento del seguidor:

en general se define como la posición del mecanismo seguidor a partir de un punto especifico denominado cero o reposo, en relación con el tiempo o con alguna fracción del ciclo de la maquinaria (desplazamiento de la leva) medida en forma angular.

El desplazamiento de la leva;

medido en grados o milímetros, es el movimiento de la leva medido desde un punto específico, ce o reposo, en relación con el mecanismo seguidor definido antes.

El perfil de la leva:

es el contorno de la superficie de trabajo de la leva.

Punto trazador:

es la línea de centro del rodillo o su equivalente. Cuando se utiliza un seguidor plano.

Curva primitiva:

es el lugar geométrico de la sucesión de puntos descritos por el punto trazador, cuando la leva se desplaza.
El circulo de la base:

Es el menor círculo inscrito en el perfil de la leva.


Circulo primario:

Es el menor círculo inscrito de la curva primitiva y con centro en el centro de la leva. Es concéntrico con el círculo de base y separado de este a un radio del rodillo seguidor.

Ángulo de presión:

Es el ángulo entre la normal a la curva primitiva y la dirección instantánea del movimiento del seguidor.

Punto primitivo:

es el punto de la curva primitiva donde tiene su máximo valor el ángulo de presión.

Circulo primitivo:

Es él círculo que pasa por el punto primitivo.

Punto de transición:

Es el punto de máxima velocidad donde la aceleración cambia de signo (cambia la dirección de la fuerza en el seguidor). En las levas cerradas, este punto se denomina con frecuencia punto de cruce, donde, debido al cambio de dirección de la aceleración, el seguidor deja un perfil de la leva para entrar en contacto con el perfil opuesto (o conjugado).

Tema VII TRENES DE ENGRANES


Valor del tren

Un mecanismo que transmite movimiento desde una flecha motriz hasta una flecha accionada, por mediación de dos o más engranes se denomina un tren de engranaje. Los problemas concernientes a los cálculos de las relaciones de velocidades de estos trenes se considerarán en este capítulo.

El valor del tren se define como la relación de:

± Velocidad angular de la última rueda (accionada)

Velocidad angular de la primera rueda (motriz)

Estas velocidades se miden en los trenes de engranaje ordinarios con referencia a la bancada fija sobre la cual están montadas y soporta las flechas de los engranes.

El signo positivo de un valor del tren indica que la primera y última ruedas giran en el mismo sentido; el signo negativo indica que giran en sentidos opuestos.

La ley general de los engranes mostró que las relaciones de velocidades se ajusta para cualquier par de ruedas dentadas, ya sean engranes comunes, engranes helicoidales, engranes cónicos, etc.

Esta ley establece que la relación de velocidad de un par de engranes esta en relación inversa al número de dientes. De esta manera el método para encontrar el valor del tren en términos del numero de dientes es el mismo para todos los trenes de engranajes, no importando la variedad de engranes que contengan.

Tren de engranaje simple

Es uno en el cual no existen dos ruedas rígidamente ajustada a la misma flecha, para que giren a la misma velocidad angular. La figura 7.1 muestra un tren de este tipo.

Aquí el movimiento se transmite de 2 hasta 5 a través de las ruedas 3 y 4. Por definición, el valor del tren es ω5121. Los círculos primitivos de los engranes giran juntos sin deslizamientos; de esta forma la velocidad de la líneas primitiva es la misma para todos. Se deduce que la rueda 5, a través del contacto con la 4, girará a la misma velocidad de la línea primitiva como si estuviera engranada con la 2.


Figura 7.1 Tren de engranes simple


Los tamaños de las ruedas intermedias 3 y 4 o el número de dientes que contengan, no tienen ningún efecto sobre el valor del tren. Por esta razón, 3 y 4 comúnmente se denominan “locas o parásitas”. Esto en parte no está bien dicho, en vista de que las ruedas trasmiten en la misma forma en que lo hacen las ruedas 2 y 5.

Si quitáramos la rueda 4 del tren de engranaje y la 5 se moviera desde la 3, la rueda 5 tendría la misma velocidad, pero en sentido opuesto. Por lo anterior, el número de las ruedas locas controla el signo del valor el tren de engranaje.

En vista de lo anterior es evidente que el valor del tren para un tren de engranaje simple, es igual a la relación inversa del número de engranajes de la Fig. 7.1,

V.T. = ω51 = N2

ω21 N5

Donde N2 y N5 son el número de dientes.

Inspeccionado, se observa que las ruedas 2 y 5 giran en sentidos opuestos, lo cual explica el signo negativo. Substituyendo por el número de dientes indicado en la figura, obtenemos

ω51 = -30 = -2

ω21 45 3

La figura 7.2 muestra un tren de engranaje simple que contiene un engrane anular o interno 2, el cual mueve una rueda loca 3 que a su vez mueve la rueda 4.


Figura 7.2 Tren de engrane simple con engrane anular


La relación del tren es:

ω41 = -100= -2 ½

ω21 40

Empleamos el signo negativo, ya que la rueda motriz gira en sentido de las manecillas del reloj, cuando la rueda accionada gira en sentido contrario a las manecillas el reloj.

Tren de engranaje compuesto

Es aquel en el cual, cuando menos un par de ruedas se encuentran rígidamente fijas a la misma flecha para que las dos giren a la misma velocidad angular. Uno de estos trenes se muestra en la fig. 7.3.


Figura 7.3 Tren de engrane compuesto


En este tren la transmisión es a través de 2, 3, 4, 5, en ese orden y las ruedas 3 y 4 se encuentran montadas sobre la misma flecha. Para localizar la relación del tren proseguimos como sigue:

Considerando las ruedas 2 y 3,

ω31 =N2

ω21 N3

También considerando las ruedas 4 y 5,

ω51= N4

ω41 N5

Multiplicando las ecuaciones A y B obtenemos

ω31 ω51 = N2 N4

ω21 ω41 N3 N5

Pero ω3141 en vista de que estas ruedas están montadas sobre la misma flecha.

Por esto

ω51 = N2 N4

ω21 N3 N5

Si denominamos a la primera rueda de cada par de engranes la motriz y a la segunda rueda la accionada, podemos escribir:

Valor del tren = ± El producto del numero de dientes de las motrices

El producto del numero de dientes de las accionadas

El signo como dijimos anteriormente, depende de si la rotación del extremo accionada del tren es el mismo o si es opuesto al extremo motriz. Los trenes de engranajes compuestos comúnmente se emplean cuando la reducción de velocidad es grande.

En casos como tales, un tren de engranaje simple con la misma relación de velocidad, podría requerir el uso de un engranaje muy grande.

Trenes de engranaje recurrentes compuestos

Se dice que un tren de engranaje es recurrente cuando la primera y última rueda son coaxiales. Los trenes de engranajes en las transmisiones de los automóviles que se usan para “primera”, “segunda” o “reversa” son de este tipo. La primera y última rueda son coaxiales de tal forma que se pueden acolar conjuntamente cuando el automóvil está en “tercera “. Los engranes de un torno forma parte de un tren de engranaje recurrente. En la Fig. 7.4 se muestra un tren recurrente de 4 engranes comunes, 3 y 4 se encuentran fijos a la misma flecha.


Figura 7.4 Tren de engrane recurrentes


La distancia entre centro y centro de las flechas en R2+ R3 = R4 + R5.

Si todas las ruedas tienen dientes del mismo paso o módulo, el número de dientes es

Proporcional a sus radios primitivos. Por esto, si R2 = C X N2 entonces R3 = C X N3, R4 = CX N4, R5 = C X N5, donde C es constante. Sustituyendo estos valores en la ecuación arriba mencionada obtenemos

N2 + N3 = N4 + N5

EJEMPLO: En la Fig. 7.4 se muestra un tren de 4 engranes recurrentes, con un valor del tren de 1/6. La rueda 2 tiene 20 dientes; la rueda 3, 40 dientes. Encontrar el número de dientes para las ruedas 4 y 5 considerando que el paso de los dientes es el mismo para todas las ruedas.


El valor del tren es

Por lo tanto:

(A)

También:

(B)


Las ecuaciones A y B solucionan N4 y N5. Por consiguiente encontramos que N4 = 15 y N5 = 45. Transmisión del automóvil. La figura 7.5 ilustra un tipo común de transmisión para un automóvil que ofrece tres velocidades: avance, neutral y reversa. El miembro mas importante consiste en la flecha motriz A y la flecha accionada B, los engranes F, G, H, L están rígidamente conectados uno otro y giran sobre una flecha lateral. La ilustración muestra la transmisión en su posición neutra. Los engranes C y F siempre se encuentran engranados, para que la unidad F, G, H, I siempre este en movimiento.

El sistema de engranaje se controla por la palanca M que acciona los engranes D o E hacia la derecha o hacia la izquierda según se desee la transmisión trabaja como sigue:

(a)Tercera velocidad (transmisión directa). El engrane D se mueve hacia la izquierda, los dientes internos de D engranan con C. Las flechas A y B giran ahora a la misma velocidad.

(b)Segunda velocidad. El engrane D se corre hacia la derecha, engranando con G. El tren de engranaje recurrente D, F, G, D, ocasiona que B gire el mimo sentido que A, pero a una velocidad reducida.


Figura 7.5 Transmisión por engranajes deslizables de un automóvil


c) Primera velocidad. Se mueve el engrane E, hacia la izquierda para que engrane con H. El tren de engranaje C, F, H, E mueve a B en el mismo sentido que A, pero con una reducción de velocidad de un valor más grande que en la posición de la segunda velocidad, debido a la reducción en la relación del numero de dientes, NH:NE comparado con NG:ND.

(d) Reversa. El engrane E se mueve hacia la derecha engranando con una rueda loca situada detrás del plano de la lección y que engrana con L. Esta rueda loca no esta indicada en la figura. El movimiento ahora se transmite a través de G, F, L hacia la rueda loca y a través de ella hasta E, ocasionando que B gire en un sentido opuesto al de A.

Trenes de engranes epicicloidales o planetarios

En los trenes de engranajes comunes discutidos anteriormente, las ruedas giran con referencia a ejes fijos. El marco soporta las ruedas y forma el eslabón fijo en el mecanismo. Por otro lado, en un tren de engranaje epicicloidal, los ejes de algunas de las ruedas se encuentran en movimiento, y uno de los engranes generalmente se convierte en el eslabón fijo. Un tren de engranaje común y corriente se puede convertir en un tren epicicloidal fijando una de las ruedas, y ocasionando que gire el marco que soporta los ejes de las ruedas. El tren de engranaje epicicloidal de la Fig. 7.6 tiene una rueda 1 estacionaria, y el marco 3 gira alrededor del perno en A con el resultado de que 2 gira alrededor sobre 1.


Figura 7.6 Tren de engranes epicicloidal


Lo que frecuentemente deseamos saber sobre un tren epicicloidal, es la relación entre velocidad angular de las ruedas movidas y la velocidad angular del marco que soporta los ejes de las ruedas.

En la fig. 7.6 esta es ω2131 midiéndose las dos velocidades con respecto a la rueda fija. Esta cantidad podemos denominarla el valor epicicloidal, consideraremos un método para calcularlo.

Método general para calcular las relaciones de velocidad de trenes de engranajes epicicloidales (que también se puede emplear cuando ningún miembro se sostiene fijo), se describe a continuación, consistiendo de tres pasos.

1.-Todo el tren de engranaje se encuentra enclavado para que no haya movimiento relativo de las partes, y luego se gira una revolución en el sentido de las manecillas del reloj, Como resultado, cada miembro del tren girará una revolución en el sentido de las manecillas del reloj.

Esto se puede aclarar si giramos lentamente este libro una revolución, y notamos que cada miembro en la ilustración del tren hace una revolución con referencia a su propio eje.

2.-El tren epicicloidal se convierte ahora en un tren ordinario si enclavamos el marco sobre el cual se encuentran montados los engranes, y al mismo tiempo liberamos el engrane fijo. El engrane que anteriormente era fijo se gira ahora una revolución en sentido contrario a las manecillas del reloj, y el numero de vueltas que efectúan los miembro se apunta en una tabulación.

3.- El resultado neto de las operaciones anteriores se debe localizar sumando algebraicamente el número de revolución s que hace cada miembro del tren. El movimiento resultante del engranaje

“fijo” siempre es cero; por esto, los desplazamientos angulares de los otros engranes son iguales como si el tren hubiese permanecido epicicloidal. De estos desplazamientos angulares se puede calcular la relación de velocidad del tren.

Ejemplo 1.-Aplicando los métodos antes mencionados al ten de engranaje epicicloidal de la Fig. 7.7 Obtenemos: (1) el tren es enclavado y todo el mecanismo se gira una revolución en el sentido de las manecillas del reloj, (2) el brazo 4 se traba y el engrane 1 gira una vuelta en sentido contrario al de las manecillas el reloj, o sea en dirección negativa, y el número de vueltas de los otros engranes se anota en la tabulación; (3) el movimiento resultante de los miembros concernientes se encuentran sumando algebraicamente los valores obtenidos en la tabulación para los pasos 1 y 2.


Figura 7.7 1-240


Esto se ilustra en la tabla 7.1. Entonces, mientras el brazo 4 hace +1 vuelta, el engrane 3 hace +5 vueltas, y la relación ω3141 es igual a +5.

Tablas 7.1

Pasos Giros

1 2 3 4

1 +1 +1 +1 +1

2 - 1 ..... +4 0

3 0 ..... +5 +1

Ejemplo 2. En las Figuras 7.8 y 7.9 se ilustra un tren epicicloidal compuesto, en el cual el brazo 6, que soporta los engranes 3 y 4, no es el eslabón motriz ni el accionado. El motriz 2 engrana con la rueda 3, que a su vez engrana con la rueda angular estacionaria

1. Los engranes 3 y 4 se encuentran fijos a la flecha que está sostenida por el brazo 6, el cual se encuentra libre para girar sobre la flecha A. El engrane 4 se encuentra engranado con la rueda angular 5, la cual está enclavada a la flecha movida B.

El primer paso para localizar la relación del tren es el de solidarizar el tren y girar todo el mecanismo una vuelta en dirección positiva (en sentido de las manecillas del reloj).

El segundo es el de trabar el brazo 6, gira la rueda fija 1, una revulsión en dirección negativa (en sentido contrario de las manecillas del reloj), y tabular los giros efectuados por los otros engranes.


Figura 7.8 Figura 7.9


El tercer paso es el de sumar algebraicamente los movimientos obtenidos en los pasos tomados anteriormente para localizar el movimientos resultante. Esto se efectúa en la tabla número 7.2.

Tabla 7.2

Pasos Giros

1 2 3 4 5 6

1 +1 +1 +1 +1 +1 +1

2 - 1 +57 - 57 - 57 - 57 x 12 0

27 15 15 15 54

3 0 +28 .... .... + 7 +1

9 45

Por esto, mientras el engrane 2 hace +28/9 vueltas, el engranaje 5 hace +7/45 vueltas. La relación de velocidad ω5121= 7/45 = +1/20.

28/9

De ahí que mientras la flecha A hace 20 vueltas la flecha B gira 1 vez la misma dirección.

Ejemplo 3. La Fig. 7.10 muestra el arreglo para un tren epicicloidal compuesto recurrente, que da una gran reducción de velocidad desde la flecha motriz A hasta la flecha C. La flecha A mueve el brazo 5, que soporta la flecha B a la cual se encuentran enclavados las ruedas dentadas 2 y 3. La rueda 1 es solidaria. Por lo anterior la rotación A ocasiona que 2 gire sobre 1; mientras que 3 mueve a 4, el cual se encuentra enclavado a la flecha movida C.

Supongamos que el numero de dientes del los engranes son 1-60 dientes 2-61 dientes, 3-60 dientes, 4-61 dientes. La flecha gira 100 rpm. En sentido de las manecillas del reloj. Localizar la velocidad y la dirección de la rotación de la flecha C.


Figura 7.10


Siguiendo el procedimiento usual, primeramente giramos todo el tren 1 vueltas en sentido de las manecillas del reloj (+1). Entonces sostenemos el brazo fijo 5, giramos el engrane fijo 1, una vuelta en dirección opuesta y encontramos el numero de vueltas efectuado por los otros engranes, como lo muestra el paso 2 de la tabla. Finalmente, el movimiento resultante se obtiene en el paso 3 sumando los pasos 1 y 2 algebraicamente, como lo muestra la tabla 7.3.

Tabla 7.3

Pasos Giros

1 2 3 4 5

1 +1 +1 +1 +1 +1

2 - 1 + 60 + 60 - 60 x 60 0

61 61 61 61

3 0 .... .... + 121 +1

3721

De esta se puede observar que, si la flecha A hace 100 rpm en sentido de las manecillas del reloj, C hace 100(121/3721) = 3.25 rpm en la misma dirección.

Este caso ilustra el método por el cual se puede obtener una gran reducción de velocidad empleando un tren epicicloidal, usando engranes que son más o menos del mismo tamaño. El tren puede ser de forma compacta.

Seria instructivo investigar un poco mas este ejemplo cambiando los dos pares de engranes.

Entonces el número de dientes en los engranes será: 1-61 dientes, 2-60 dientes, 3-61 dientes, 4-60 dientes. La flecha A gira otra vez 100 rpm en sentido de las manecillas del reloj, y se requiere encontrar la velocidad y dirección del giro de la flecha C.

El procedimiento es exactamente el mismo que el anterior y se sumariza en la tabla 7.4.

Tabla 7.4

Pasos Giros

1 2 3 4 5

1 +1 +1 +1 +1 +1

2 - 1 + 61 + 61 - 61 x 61 0

60 60 60 60

3 0 .... .... - 121 +1

3600

De esta se puede observar que, si la flecha A gira a 100 rpm en sentido de las manecillas del reloj, la flecha C gira 100(121/3600) = 3.36 rpm en dirección opuesta.

Por lo anterior, simplemente cambiando los 2 juegos de engranes, es suficiente para ocasionar que la dirección del giro de la flecha movida se invierta permaneciendo el tamaño del tren y longitud del brazo 5 sin alteraciones.

Trenes epicicloidales que no tienen un engrane fijo

Ocasionalmente se podrá emplear un tren de engranaje epicicloidal cuando ningún engrane se retiene fijo. El ejemplo más común de este caso es el diferencial de un automóvil cuando este se encuentra dando una vuelta; esto será considerado posteriormente.

El procedimiento en problemas de este tipo es similar al método esbozado anteriormente, exceptuando que en primer paso, en vez de que el tren solidario gire una revolución, este girará tantas revoluciones como las que el brazo efectúe por unidad de tiempo; y en el segundo paso, donde el brazo es enclavado, el engrane cuya velocidad absoluta es conocida, debe girar en la dirección indica el número de veces tal, que sumando las vueltas de todo el tren en el primer paso dé el total algebraico correcto. Posiblemente esto podrá ilustrarse mejor mediante un ejemplo.

Ejemplo 1.- En la fig 7.11 la flecha A gira 100 rpm en sentido de las manecillas del reloj, moviendo un tren de engranaje epicicloidal, engranando la rueda 2 con la 3 y la 4 con la 5. Debe tomarse en cuanta que los engranes 2 y 4 sobre la flecha A no forman parte del tren epicicloidal, sino que solamente lo mueven. El número de dientes de cada engrane se muestra en la figura. Se desea conocer la dirección del giro y la velocidad de la flecha B.


Figura 7.11


La velocidad del engrane 3, o del brazo 7 el cual esta fijo a 3, es 100 X 40/20 = -200 rpm. La velocidad del engrane 5 es 100 X 20/40 = -50 rpm. La tabla 7.5 debe establecerse ahora para hacer la lista de los engranes en el tren epicicloidal.

Tabla 7.5

Pasos Giros

3 o 7 5 6 8 9

1 - 200 - 200 - 200 - 200 - 200

2 0 + 150 - 150 x 40 - 150 x 40 - 150 x 40 x 15

50 50 50 75

3 - 200 - 50 - 320 - 320 - 176

Para el paso 1 todo el tren gira a 200 revoluciones en sentido contrario de las manecillas del reloj, la cual es la velocidad y el sentido de rotación del brazo 7. Para el paso 2 el brazo 7 se mantiene fijo y el engrane 5 gira un número de vueltas en la dirección apropiada para que su movimiento resultante sea el que realmente ocurre, o sea –50 rpm. Evidentemente el valor requerido es +150 rpm. Con el brazo 7 fijo, y girando el engrane 5 a +150 revoluciones, las revolución de los otros engranes se pueden localizar y apuntar. En el paso 3, se calcula el movimiento resultante mediante una suma algebraica y se encuentra que el engrane 9, o sea la flecha B, gira –176 rpm, esto es, en sentido contrario a las manecillas del reloj.

Ejemplo 2. La fig. 7.12 muestra el diagrama esquemático de un diferencial de automóvil. La potencia se recibe a través de la flecha motriz desde el motor por medio de la transmisión y es retransmitida a través de los engranes cónicos 2 y 3. Sobre el engrane 3 se encuentran unos pernos que soportan los engranes cónicos y 4 y 4´ los cuales engranan con las ruedas 5 y 6. Los engranes 5 y 6 se encuentran enclavados a los ejes a los cuales también se encuentran fijas las ruedas.


Figura 7.12


Cuando el automóvil está viajando sobre un camino recto, el diferencial gira “punta sobre punta” esto es, no hay movimiento relativo entre los engranes 4 o 4´ y los engranes 5 y 6. De cualquier forma, cuando el automóvil recorre una curva una rueda y su eje debe correr más despacio y la otra más aprisa para prevenir el deslizamiento de la llanta sobre el camino. Esto ocasiona un movimiento relativo de los piñones en el tren epicicloidal del cual 3 es el brazo, y los otros engranes son 4 o 4´, 5 y 6. Suponiendo que en un camino recto cada eje gira a 100 rpm, pero en una curva la velocidad de la rueda derecha se reduce a 50 rpm. ¿Cuál será la velocidad del eje izquierdo, tomando en cuenta que la velocidad de la flecha motriz permanece sin cambio?

Siguiendo el método descrito anteriormente (véase tabla 7.6), sabemos que la velocidad de la corona o brazo 3 es +100 rpm. Por consiguiente, en el paso 1 giramos el tren + 100 revoluciones. En el paso 2 la corona o brazo 3, se mantiene fijo y el piñón 6 se gira un número de vueltas en la dirección adecuada para que su movimiento resultante sea el que realmente ocurre, o sea +50 rpm. Este valor es –50 vueltas manteniendo la corona 3 fija y girando el piñón 6, -50 vueltas; aparentemente el piñón 5 girará + 50 vueltas. Esto es cierto en vista de que los piñones 5 y 6 son del mismo tamaño y los piñones 4 y 4´ actúan simplemente como intermedios o locos. Después de anotar los valores en la tabla, se encuentra el movimiento resultante en el paso 3.

Tablas 7.6

Pasos Giros

3 5 6

1 +100 +100 +100

2 0 +50 - 50

3 +100 +150 +50

Debe observarse que la velocidad de una rueda se incrementa la misma cantidad que la otra se reduce. Si la parte posterior se levanta y una de las ruedas se mantiene fija, la otra girara el doble.

Esta situación ocurre frecuentemente en el invierno, cuando una rueda del automóvil reposa sobre el hielo el cual tiene un bajo coeficiente de fricción y la otra reposa sobre el camino seco que tiene un alto coeficiente de fricción. En estos casos el automóvil debe empujarse para que salga de esta condición antes de poder conducirlo normalmente.

Aplicaciones de trenes de engranaje epicicloidales

No obstante que los trenes de engranajes epicicloidales tienen la particularidad de ser ruidosos, se amplían en diferenciales de automóvil, en motores eléctricos con reductor integral de engranes, polipastos (Fig. 7.13) y alguno reductores de velocidad (Fig.7.14)

La fig. 7.13 muestra una aplicación de un tren de engranaje epicicloidal compuesto recurrente, en un polipasto. El aparato se opera por medio de una cadena manual a la derecha, al cual accionada la estrella, esta tienen un diámetro relativamente grande. La estrella está conectada a una flecha que transmite el movimiento al tren de engranaje en la izquierda. Este tren es epicicloidal y contienen un engrane interno fijo; además tiene como miembro accionado un bastidor que soporta los pequeños piñones giratorios. Este bastidor se encuentra unido sólidamente a una camisa, la cual también sostiene la estrella que acciona la cadena donde está montado la grúa en el centro del polipasto. Un embrague automático en el lado derecho de la caja sostiene la carga hasta que la cadena manual es jalada hacia abajo.


Figura 7.13 Polipasto de engranes


Figura 7.14 Reductor de velocidad con tren de engranes epicicloidales


Haciendo una elección apropiada del diámetro de la estrella y del tamaño de los engranes, se puede diseñar el aparato con cualquier relación de velocidad deseada para la grúa y la cadena manual. Si no consideramos las pérdidas por fricción, la relación de la tracción de la cadena de carga a la tracción de la cadena manual, es la recíproca de su relación de velocidad, en vista de que el trabajo efectuado por ambos es el mismo.

Cuando se requiere una reducción en la relación de revoluciones entre el elemento motriz o y el accionado de una máquina, por ejemplo, cuando se emplea un motor eléctrico para mover una máquina a baja velocidad, comúnmente se usa un reductor de velocidad del tipo epicicloidal, parecido al mostrado en la Fig. 7.14, como sustituto para bandas, cadenas, o engranes expuestos. Un engrane interno o anular es el miembro fijo.